

GUÍA Nº 6 Unidad 1 GASES IDEALES		
Alumno(a):	Curso: 4° medio	2 horas
Profesor(a): Monica Gana R	FECHA:	pedagógicas
	4 /04/2020	

Objetivo • aplican a situaciones cotidianas las leyes macroscópicas de un gas ideal que relacionan presión, volumen y temperatura

- 1. Eje Temático: Química
- 2. Habilidades a medir:

APLICAR CONOCIMIENTOS DE CONTENIDO DIRECTO SOBRE GASES IDEALES EN LA RESOLUCION DE EJERCICIOS

APLICA

1. En un experimento un gas ideal con 25 m3 de volumen y presión de 1,5 atm, fue sometido a una presión de 4 atm, manteniéndose a una temperatura constante. ¿Qué volumen ocupará?

2. Los neumáticos de un coche deben estar, a 20 °C, a una presión de 1,8 atm. Con el movimiento, se calientan hasta 50°C, pasando su volumen de 50 a 50,5 litros. ¿Cuál será la presión del neumático tras la marcha?		
3. Un globo de aire caliente tiene un volumen de 500 m3 a la presión atmosférica normal y una temperatura del aire de 40°C. Cuando está en ascensión, la presión es de 0,8 atm y con el quemador de gas aumentamos la temperatura hasta los 70 °C. ¿cuál será el nuevo volumen?		
4 En un recipiente de acero de 20 L de capacidad introducimos un gas que, a la temperatura de 18 °C ejerce una presión de 1,3 atm. ¿Qué presión ejercería a 60 °C?		
5 Disponemos de una muestra de un gas que cuando a la temperatura de 200 °C se ejerce sobre el una presión de 2,8 atm, el volumen es 15,9 L. ¿Qué volumen ocupará si, a la misma temperatura, la presión bajase hasta 1 atm?		
6 Un alpinista inhala 500 mL de aire a una temperatura de –10 °C ¿Qué volumen ocupará el aire en sus pulmones si su temperatura corporal es de 37°C?		
7 En una botella metálica tenemos un gas a 15°C y una presión de 7.5 atmósferas. Si la presión máxima que aguanta la botella es de 12.5 atm, calcular cuál es la temperatura máxima a la que se puede calentar el gas de su interior.		

8 Tenemos una lata de 5 litros llena de aire a 30°C y 750 mmHg. Si tiene un tapón que salta cuando la presión es de 1,2 atm, calcula a qué temperatura saltará el tapón		
Estimados estudiantes esperando se encuentren todos muy bien de salud junto a su a familia, solicito enviar la guía resuelta a la plataforma classroom del establecimiento. Un gran abrazo a la distancia y a cuidarse mucho mucho		